

Doc. Number:

■ T	entative Target Specification
	reliminary Specification
	pproval Specification
	pprovai Specification

MODEL NO.: G070ACE SUFFIX: LH1

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for you signature and comments.	r confirmation with your

Approved By	Checked By	Prepared By

	1. GENERAL DESCRIPTION	5
	1.1 OVERVIEW	5
	1.2 FEATURES	5
	1.3 APPLICATION	5
	1.4 GENERAL SPECIFICATIONS	5
	1.5 MECHANICAL SPECIFICATIONS	6
	2. ABSOLUTE MAXIMUM RATINGS	7
	2.1 ABSOLUTE RATINGS OF ENVIRONMENT	7
	2.2 ELECTRICAL ABSOLUTE RATINGS	8
	2.2.1 TFT LCD MODULE	8
	2.2.2 LED CONVERTER	8
	3. ELECTRICAL CHARACTERISTICS	9
	3.1 LCD ELETRONICS SPECIFICATION	g
	3.2 BACKLIGHT UNIT	12
	4. ELECTRICAL SPECIFICATIONS	14
	4.1 TFT LCD MODULE	14
	5. INTERFACE CONNECTIONS	15
	5.1 TFT LCD MODULE	15
	5.2. COLOR DATA INPUT ASSIGNMENT	
	6. INTERFACE TIMING	18
	6.1 INPUT SIGNAL TIMING SPECIFICATIONS	
	6.2 POWER ON/OFF SEQUENCE	
	6.3 The Input Data Format	21
	6.4 Scanning Direction	23
	7. OPTICAL CHARACTERISTICS	24
	7.1 TEST CONDITIONS	24
	7.2 OPTICAL SPECIFICATIONS	
	8. RELIABILITY TEST ITEM	
	9. PACKING	
	9.1 PACKING SPECIFICATIONS	
	9.2 PACKING METHOD	
	9.3 UN-PACKING METHOD	
	10. MODULE LABEL	
חחו	10.1 INX MODULE LABEL	30

CONTENTS

舞舞:会球淡晶界交易中心。

11.	
11.1 ASSEMBLY AND HANDLING PRECAUTIONS	31
11.2 STORAGE PRECAUTIONS	31
11.3 OTHER PRECAUTIONS	32
12. MECHANICAL CHARACTERISTIC	33
Appendix . SYSTEM COVER DESIGN NOTICE	34

REVISION HISTORY

Version	Date	Page	Description
0.0	Sep.6, 2019	All	Spec Ver. 0.0 was first issued.

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G070ACE-LH1 is a 7" TFT Liquid Crystal Display module with WLED Backlight unit and 30 pins 1ch-LVDS interface. This module supports 800xRGBx480 AAS mode and can display 262k or 16.7M colors. The PSWG is to establish a set of displays with standard mechanical dimensions and select electrical interface requirements for an industry standard 7" WVGA LCD panel and the LED driving device for Backlight is built in PCBA.

1.2 FEATURES

- -Excellent brightness (1000 nits)
- Ultra high contrast ratio (800:1)
- Fast response time (T_R + T_F =25 ms)
- WXGA (800 x 480 pixels) resolution
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- PSWG (Panel Standardization Working Group)
- Ultra wide viewing angle: 169(H)/ 169(V) (CR>10) AAS technology
- -180 degree rotation display option
- -Wide operation temperature

1.3 APPLICATION

- -TFT LCD monitor
- Industrial applications

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	7" real diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	800 x R.G.B. x 480	pixel	-
Pixel Pitch	0.1905 (H) x 0.1905 (V)	mm	-
Pixel Arrangement	RGB stripe	-	-
Display Colors	16.7M / 262K	color	-
Transmissive Mode	Normally Black	-	-
Surface Treatment	AG type, 3H hard coating,	-	-
Luminance, White	1000(Typ.)	Cd/m2	
Color Gamut	70 % of NTSC(Typ.)	-	-
Power Consumption	(Total 3.98 W (Typ) @ cell 0.48 W (Typ), BL 3.5	5 W (Typ))	

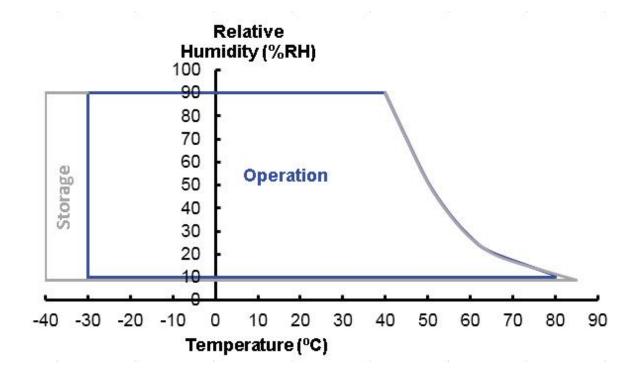
Note (1)Please refer to the attached drawings for more information of front and back outline imensions

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	169.5	170	170.5	mm	(4)
Module Size	Vertical (V)	109.5	110	110.5	mm	(1) (2)
	Thickness (T)	5.5	6	6.5	mm	(2)
Bezel Area	Horizontal	154.1	154.40	154.7	mm	
Dezei Alea	Vertical	93.14	93.44	93.74	mm	
Active Area	Horizontal	-	152.4	-	mm	
Active Area	Vertical	-	91.44	-	mm	
W	eight		(182.8)		g	

Note (1)Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

ltom	Cumbal	Va	llue	Linit	Note
Item	Symbol	Min.	Max.	Unit	Note
Storage Temperature	Tst	-30	85	ď	(4) (2)
Operating Ambient Temperature	Тор	-30	80	ď	(1), (2)

Note (1)

- (a) 90 %RH Max.
- (b) Wet-bulb temperature should be 39 °C Max.
- (c) No condensation.

Note (2) Panel surface temperature should be 0d min. and 90d max under Vcc=5.0V, fr =60Hz, typical LED string current, 25d ambient temperature, and no humidity control. Any condition of ambient operating temperature, the surface of active area should be keeping not higher than 85d.

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

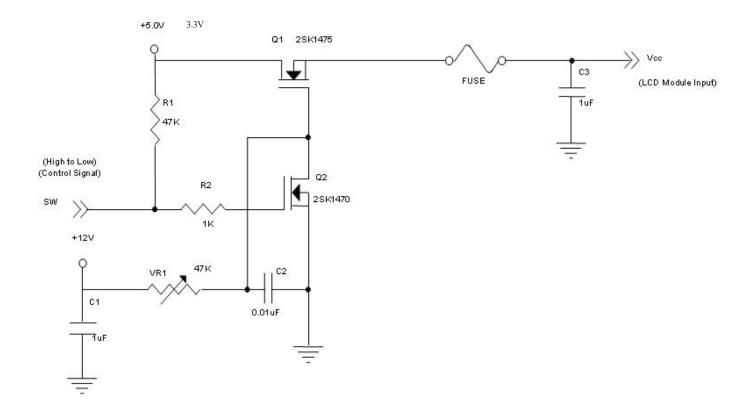
Item	Item Symbol		lue	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note	
Power Supply Voltage	Vcc	-0.3	3.6	V	(1)	
Logic Input Voltage	V _{IN}	-0.3	3.6	V	()	

2.2.2 LED CONVERTER

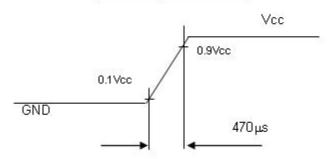
Item	Symbol				Unit	Note
item	Symbol	Min.	Тур	Max.	Offic	Note
Converter Voltage	LED_V _{in}	0	(12.0)	(18.0)	V	(1), (2)
Enable Voltage	LED_EN	0	3.3 / 5	7	V	Duty=100%
						(1), (2)
Backlight Adjust	LED_PWM	0	3.3 / 5	7	V	Pulse Widthr10msec.
						and DutyR10%

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

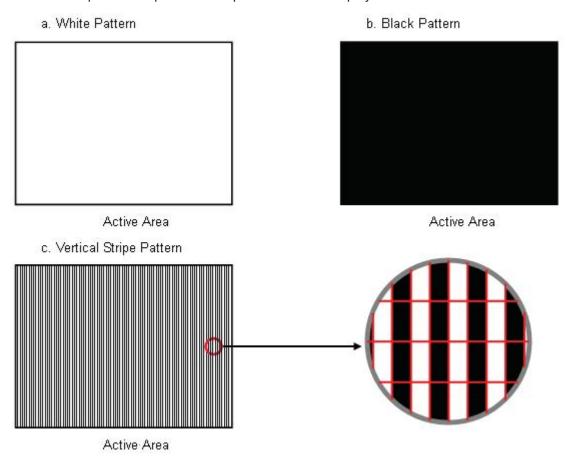
Note (2) Specified values are for input pin of LED light bar at Ta=25±2 of (Refer to 4.3.3 and 4.3.4 for further information)


3. ELECTRICAL CHARACTERISTICS

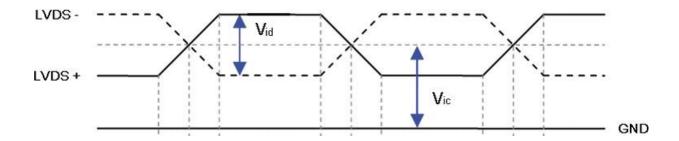
3.1 LCD ELETRONICS SPECIFICATION


Davamatav		Cymahal		Value		l lmi4	Note
Parameter		Symbol	Min.	Тур.	Max.	Unit	
Power Supply Vo	ltage	Vcc	3.0	3.3	3.6	V	-
Ripple Voltag	е	V_{RP}	-	-	100	mVp-p	-
Rush Curren	t	I _{RUSH}	-	-	2	Α	(2)
	White		-	135	200	mA	(3)a
Power Supply Current	Black	lcc	-	85	135	mA	(3)b
	Vertical Stripe		-	145	220	mA	(3)c
LVDS differential inpu	ıt voltage	Vid	200	-	600	mV	-
LVDS common input	voltage	Vic	1.0	1.2	1.4	V	-
Differential Input Voltage for	"H" Level	V _{TH}	-	-	+100	mV	-
LVDS Receiver Threshold	"L" Level	V _{TL}	-100	-	-	mV	-
Logic Input Voltage	"H" Level	V _{IH}	2.6	-	Vcc	V	-
	"L" Level	V _{IL}	0	-	0.7	V	-
Terminating Res	istor	R _T	-	100	-	Ohm	-

Note (1) The ambient temperature is $Ta = 25 \pm 2$ d. Note

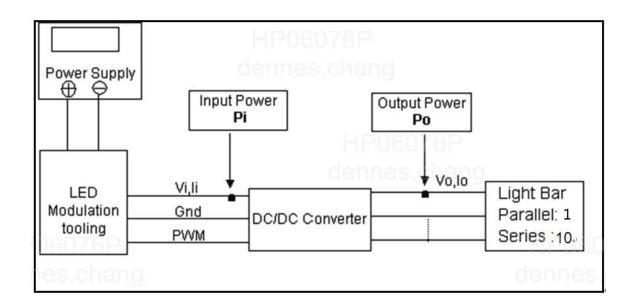

(2) Measurement Conditions:

Vcc rising time is 470µs


Note (3) The specified power supply current is under the conditions at Vcc = 3.3 V, $Ta = 25 \pm 2 \text{ d}$, Fr = 60 Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The power consumption is specified at the pattern with the maximum current.

Note (5) VID waveform condition



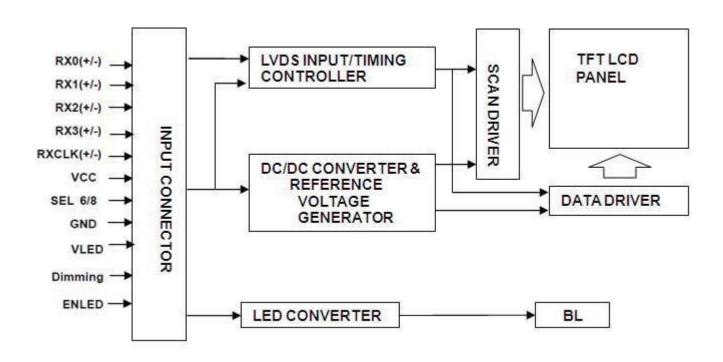
3.2 BACKLIGHT UNIT

D		0		Value		1.1	NI-4-
Par	rameter	Symbol	Min. Typ. Max.		Max.	Unit	Note
(Converter	r input voltage)	Vi	10.8	12.0	13.2	V _{DC}	(Duty 100%)
,	er input ripple oltage)	Vi _{RP}	-	-	500	mV	
(Converte	r input current)	l _i	0.2	0.3	0.4	A _{DC}	@ Vi = 12V (Duty 100%)
(Converter inrush current)		lirusн	-	5		Α	@ Vi rising time=10ms (Vi=12V)
	Input Power Consumption		-	3.5	4.0	W	(1)
EN Control	Backlight on	ENLED	2.5	3.3	5.0	V	
Level	Backlight off	(BLON)	0		0.3	V	
PWM Control	PWM High Level	Dimming	2.5		5.0	V	
Level	PWM Low Level	(E_PWM)	0		0.15	V	
PWM N	loise Range	VNoise	-	-	0.1	V	
PWM Con	trol Frequency	f _{PWM}	190	200	300	Hz	(3)
DWM Can	PWM Control Duty Ratio		5		100	%	(3),@ 190Hz <f<sub>PWM<1kHz</f<sub>
PVVIVI CON			20		100	%	(3),@ 1kHzrf _{PWM} <20kHz
LED	Life Time	L _{LED}	50000	-	-	Hrs	(2)

Note (1) LED current is measured by utilizing a high frequency current meter as shown below.

Note (2) The lifetime of LED is estimated data and defined as the time when it continues to operate under the conditions at $Ta = 25 \pm 2$ °C and Duty 100% until the brightness becomes R 50% of its original value. Operating LED at high temperature condition will reduce life time and lead to color shift.

Note (3) At 190 ~1kHz PWM control frequency, duty ratio range is restricted from 5% to 100%.

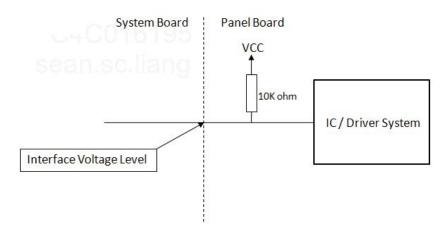

1K ~20kHz PWM control frequency, duty ratio range is restricted from 20% to 100%.

If PWM control frequency is applied in the range from 1KHz to 20KHZ, The "non-linear" phenomenon on the Backlight Unit may be found. So It's a suggestion that PWM control frequency should be less than 1KHz.

4. ELECTRICAL SPECIFICATIONS

4.1 TFT LCD MODULE

5. INTERFACE CONNECTIONS 5.1 TFT LCD MODULE


Pin No.	Symbol	Description	Note	
1	12V	LED power	-	
2	12V	LED power	-	
3	12V	LED power	-	
4	12V	LED power	-	
5	ENLED	Enable pin	-	
6	Dimming	Backlight Adjust	-	
7	NC	No Conncetion (Reserve for INX test)	(3)	
8	NC	No Conncetion (Reserve for INX test)	(3)	
9	VCC	Power supply: +3.3V	-	
10	VCC	Power supply: +3.3V	-	
11	GND	Ground	-	
12	GND	Ground	-	
13	RX0-	Negative transmission data of pixel 0	-	
14	RX0+	Positive transmission data of pixel 0	-	
15	GND	Ground	-	
16	RX1-	Negative transmission data of pixel 1	-	
17	RX1+	Positive transmission data of pixel 1	-	
18	GND	Ground	-	
19	RX2-	Negative transmission data of pixel 2	-	
20	RX2+	Positive transmission data of pixel 2	-	
21	GND	Ground	-	
22	RXCLK-	Negative of clock	-	
23	RXCLK+	Positive of clock	-	
24	GND	Ground	-	
25	RX3-	Negative transmission data of pixel 3	-	
26	RX3+	Positive transmission data of pixel 3	-	
27	GND	Ground	-	
		LVDS 6/8 bit select function control,		
28	SEL6/8	Low → 6 bit Input Mode	(2)	
20		High or NC → 8bit Input Mode		
29	GND	Ground	-	
	GND	Ground		

Note (1) Connector Part No.: Starconn 093G30-B0001A-G4.

Note (2) "Low" stands for 0V. "High" stands for 3.3V

Note (3) Pin7, Pin8 input signals should be set to no connection or ground, this module would operate normally.

SEL6/8 pin:

5.2. COLOR DATA INPUT ASSIGNMENT

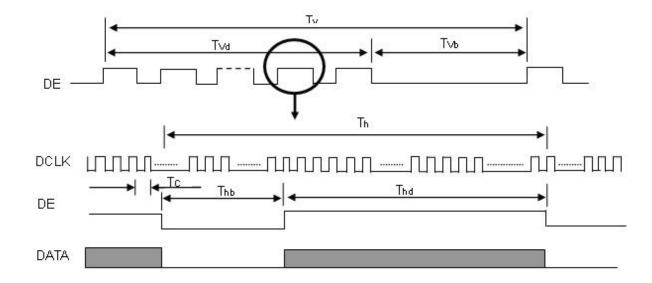
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color.

												Da		Sign	al										
Color					Re									een							Bl				
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reu	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Crov	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Gray Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Crov	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Gray Scale		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Diue	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

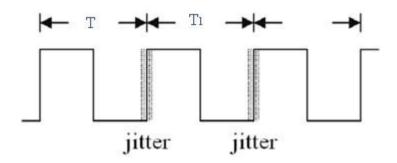
6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

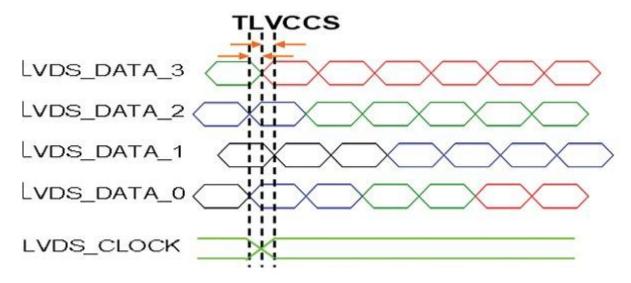

The input signal timing specifications are shown as the following table and timing diagram.

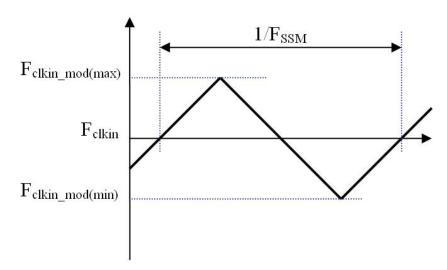
			_				
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	25.2	25.4	35.7	MHz	-
	Period	Tc		39.37		ns	
	Input cycle to cycle jitter	T _{rcl}	-0.02*Tc	-	0.02*Tc	ns	(3)
	Input clock to data skew	TLVCCS	-0.02*Tc	-	0.02*Tc	ns	(4)
LVDS Clock	Spread spectrum modulation range	Fclkin_mod	FC*98%	-	FC*102%	MHz	(5)
	Spread spectrum modulation frequency	F _{SSM}	Fr - 60 - Hz Tv 488 490 611 Th Tvb 8 10 131 Th	(5)			
	Frame Rate	Fr	-	60	-	Hz	Tv=Tvd+Tvb
Vantical Diamles Torres	Total	Tv	488	490	611	Th	-
Vertical Display Term	Active Display	Tvd	480	480	480	Th	-
	Blank	Tvb	8	10	131	Th	-
	Total	Th	860	864	974	Тс	Th=Thd+Thb
Horizontal Display Term	Active Display	Thd	800	800	800	Тс	-
	Blank	Thb	60	64	174	Tc	-

Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals are ignored.

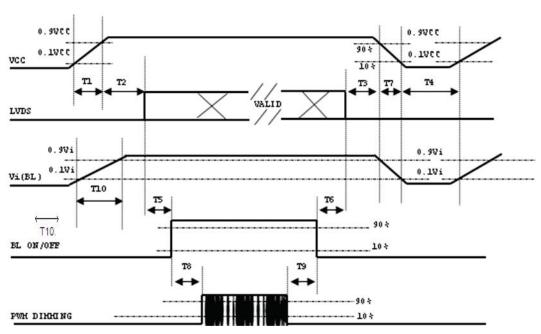

Note (2) The Tv(Tvd+Tvb) must be integer, otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM




Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

Note (4) Input Clock to data skew is defined as below figures.

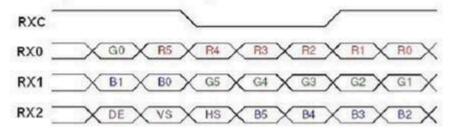

Note (5) The SSCG (Spread spectrum clock generator) is defined as below figures.

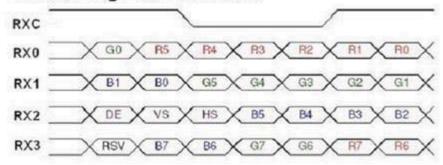
6.2 POWER ON/OFF SEQUENCE

The power sequence specifications are shown as the following table and diagram.

Timing Specifications:

Deremeter		Linita				
Parameter	Min	Тур	Max	Units		
T1	0.5	-	10	ms		
T2	0	-	50	ms		
Т3	0	-	50	ms		
T4	500	ı	-	ms		
T5	450	ı	-	ms		
T6	200	-	-	ms		
T7	10	-	100	ms		
Т8	10	ı	-	ms		
Т9	10	-	-	ms		
T10	20		50			


- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.


- (5) Interface signal shall not be kept at high impedance when the power is on.
- (6) INX won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.
- (7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "T7 spec"

6.3 The Input Data Format

SEL 6/8="High" for 8 Bits LVDS

- Note (1) R/G/B data 7: MSB, R/G/B data 0: LSB
- Note (2) Please follow PSWG

VS

HS

Vertical Sync

Horizontal Sync

Signal Name Description Remark Red Data 7 (MSB) Red-pixel Data R6 Red Data 6 Each red pixel's brightness data consists of these Red Data 5 R₅ 8 bits pixel data. R4 Red Data 4 R3 Red Data 3 R2 Red Data 2 Red Data 1 R1 Red Data 0 (LSB) R0 G7 Green Data 7 (MSB) Green-pixel Data Each green pixel's brightness data consists of these G6 GreenData 6 G5 GreenData 5 8 bits pixel data. GreenData 4 G4 G3 GreenData 3 G2 GreenData 2 G1 GreenData 1 GreenData 0 (LSB) G0 B7 Blue Data 7 (MSB) Blue-pixel Data Each blue pixel's brightness data consists of these B6 Blue Data 6 B5 Blue Data 5 8 bits pixel data. **B4** Blue Data 4 **B**3 Blue Data 3 Blue Data 2 B2 B₁ Blue Data 1 Blue Data 0 (LSB) B₀ RXCLKIN+ LVDS Clock Input RXCLKIN-DE Display Enable

6.4 Scanning Direction

The following figures show the image see from the front view. The arrow indicates the direction of scan.

Fig.1 Normal Scan

PCBA on the bottom side

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

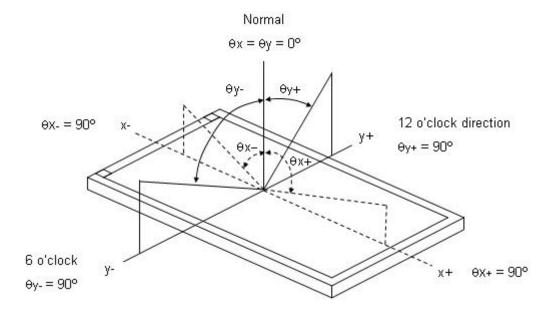
Item	Symbol	Value	Unit				
Ambient Temperature	Та	25±2	оС				
Ambient Humidity	Ha	50±10	%RH				
Supply Voltage	According to typical value and tolerance in						
Input Signal	"ELECTRICAL CHARACTERISTICS"						
PWM Duty Ratio	D	100	%				

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown here and all items are measured at the center point of screen unless otherwise noted. The following items should be measured under the test conditions described above and stable conditions shown in Note (5).

Iter	m	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	Pod	Rx		0.534	0.584	0.634			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Red	Ry		0.280	0.330	0.380			
	0.284	0.334	0.384						
	Green	Gy	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1) (5)					
	Pluo	Bx	· · · · · · · · · · · · · · · · · · ·	0.100	0.150	0.200	_	(1), (5)	
(612 1001)	blue	Ву		0.004	0.054	0.104			
	\\/bita	Wx	Gray scale	0.263	0.313	0.363			
	vvnite	Wy		0.279	0.329	0.379			
Center Lumina	nce of White	Lc		800	1000	-	nits	(4), (5)	
Contras	Contrast Ratio			600	800	-	-	(2), (5)	
Pagnana	D Time		0 -00 0 -00	-	13	-	mo	(2)	
Respons	se rime	T _F	θ_{x} -0°, θ_{Y} -0°	-	12	-	1115	(3)	
White Va	White Variation		θ _x =0°, θ _Y =0°	70	-	-	%	(5), (6)	
	Harizantal	θ_{x} +		80	89				
	Horizoniai	θ _x -	CP v 10	80	89		Dog	(1) (5)	
viewing Angle	\/autiaal	θ _Y +	CIX B IU	80	89		Deg.	(1), (5)	
	Vertical	θy-		80	89				

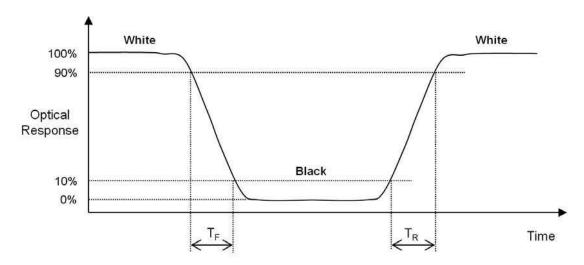
Definition负


Grayscale Maximum : Grayscale 255 (10 bits: grayscale 1023 ; 8 bits : grayscale 255 ; 6 bits: grayscale 63)

White: Luminance of Grayscale Maximum (All R,G,B)

Black: Luminance of grayscale 0 (All R,G,B)

Note (1) Definition of Viewing Angle (θx , θy):

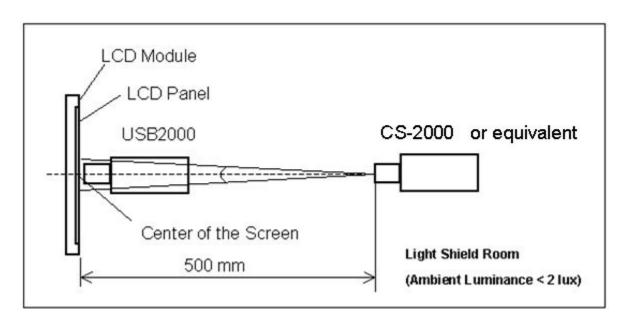


Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression at center point.

Contrast Ratio (CR) = White / Black

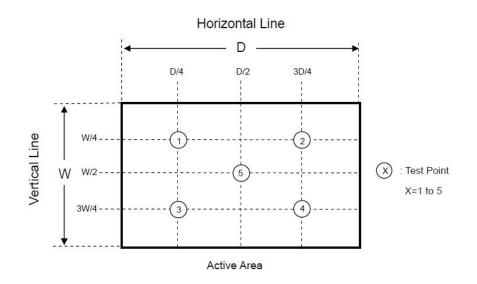
Note (3) Definition of Response Time (T_R, T_F):


Note (4) Definition of Luminance of White (LC):

Measure the luminance of White at center point

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room. The measurement placement of module should be in accordance with module drawing.



Note (6) Definition of White Variation (δW):

Measure the luminance of White at 5 points.

Luminance of White: L(X), where X is from 1 to 5.

$$\delta W = \frac{\text{Minimum } [L(1) \text{ to } L(5)]}{\text{Maximum } [L(1) \text{ to } L(5)]} \quad X \text{ 100}\%$$

8. RELIABILITY TEST ITEM

Test Item	Test Condition	Note	
High Temperature Storage Test	85°C, 240 hours		
Low Temperature Storage Test	-30°C, 240 hours		
Thermal Shock Storage Test	-30°C, 0.5hour → 80d, 0.5hour; 100cycles, 1hour/cycle		
High Temperature Operation Test	80°C, 240 hours	(1),(2)	
Low Temperature Operation Test	-30°C, 240 hours	(4),(5)	
High Temperature & High Humidity Operation Test	60°C, 90%RH, 240hours		
ESD Test (Operation)	150pF, 330Ω , 1 sec/cycle Condition 1 : panel contact, U8 KV Condition 2 : panel non-contact U15 KV	(1),(4)	
Shock (Non-Operating)	50G, 11ms, half sine wave, 1 time for ± X, ± Y, ± Z direction		
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz sine wave, 10 min/cycle, 3 cycles each X, Y, Z direction	(2),(3)	

- Note (1)There should be no condensation on the surface of panel during test,
- Note (2) Temperature of panel display surface area should be 85°C Max.
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.
- Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 2ĵ hours at room temperature.

9. PACKING

9.1 PACKING SPECIFICATIONS

- (1) 38 pcs LCD modules / 1 Box
- (2) Box dimensions: 445 (L) X 370 (W) X 275 (H) mm
- (3) Weight: approximately 8.3Kg (38modules per box)

9.2 PACKING METHOD

LCD Module

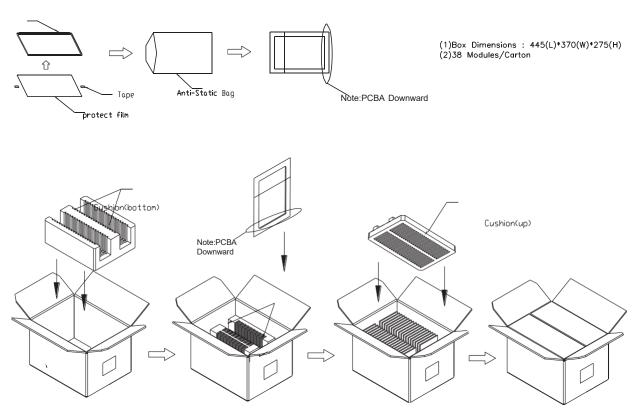


Figure. 9-1 Packing method

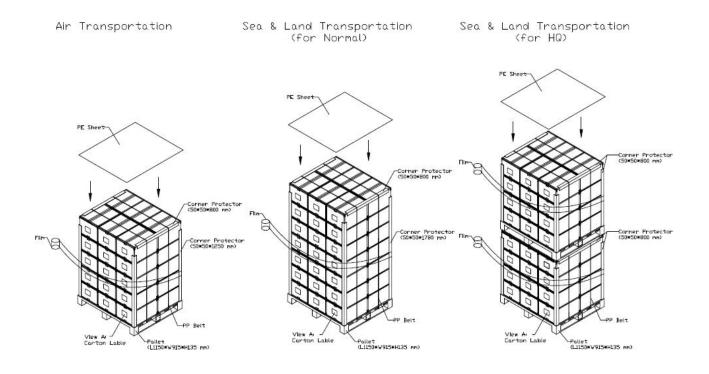
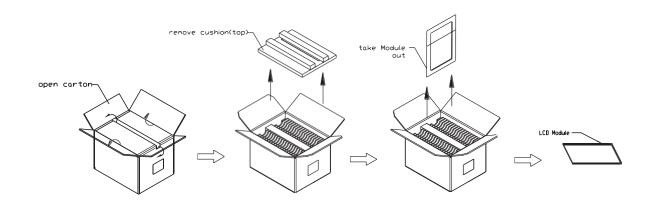
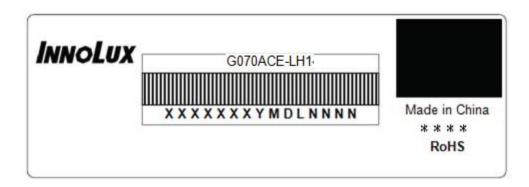


Figure. 9-2 Packing method

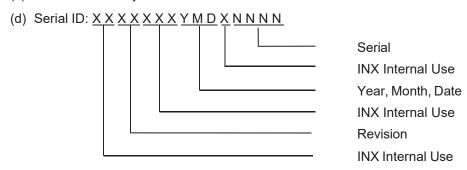
9.3 UN-PACKING METHOD




Figure. 7-3 UN-Packing method

10. MODULE LABEL

10.1 INX MODULE LABEL


The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: G070ACE-LH1

آزاً Revision: Rev. XX, for example: A1, B1, C1, C2 ...etc.

(c) 炦炦炦炦: Factory ID

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2011~2019

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

(b) Revision Code: cover all the change

(c) Serial No.: Manufacturing sequence of product

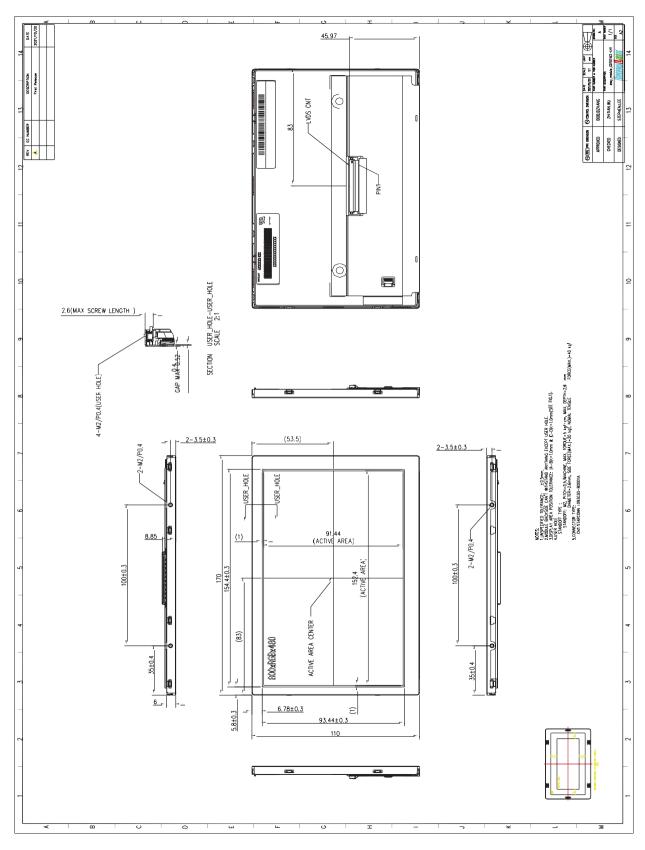
11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

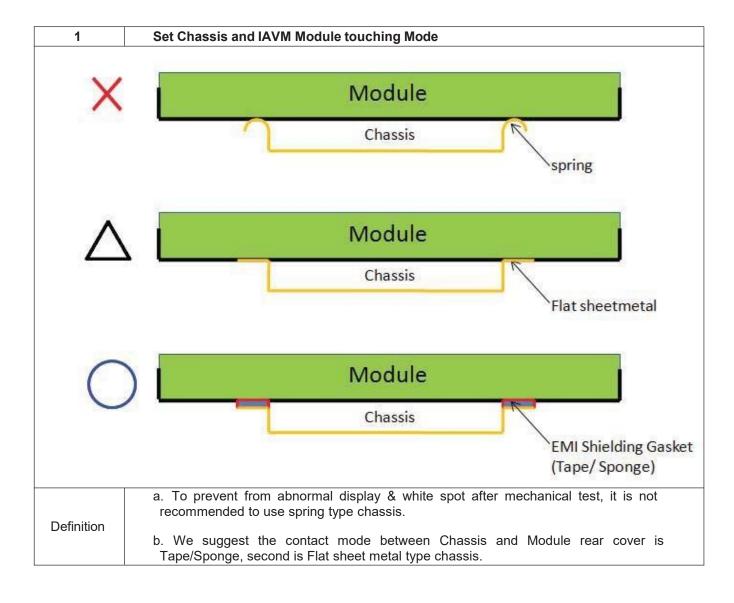
- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the lamp wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

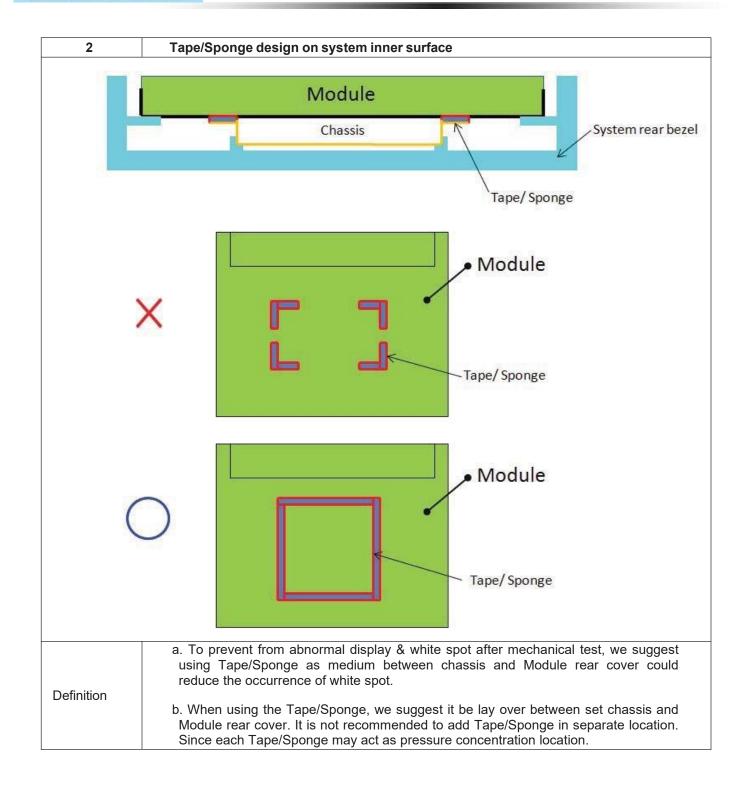
11.2 STORAGE PRECAUTIONS

- (1) When storing for a long time, the following precautions are necessary.
 - (a) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5¶C and 30¶C at humidity 50+-10%RH.
 - (b) The polarizer surface should not come in contact with any other object.
 - (c) It is recommended that they be stored in the container in which they were shipped.
 - (d) Storage condition is guaranteed under packing conditions.
 - (e) The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition
- (2) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (3) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (4) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of lamp will be higher than the room temperature.

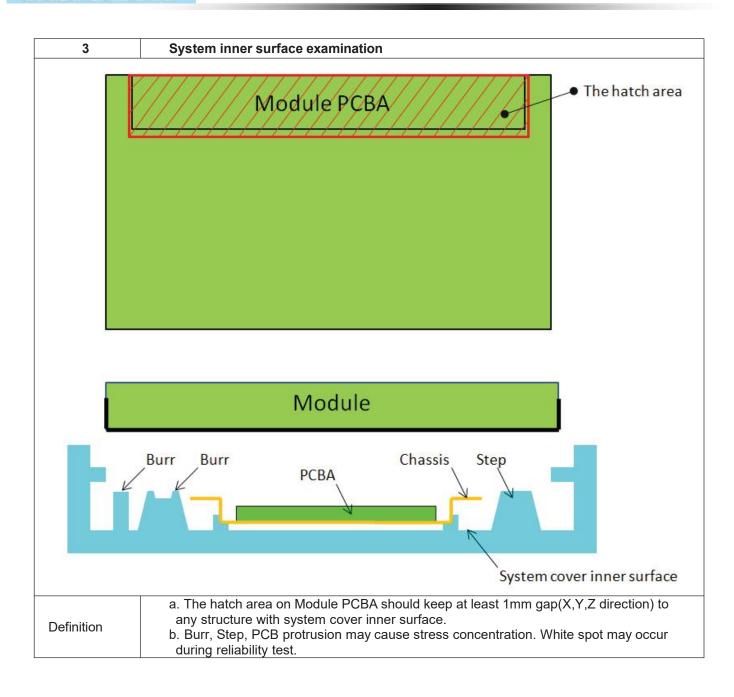


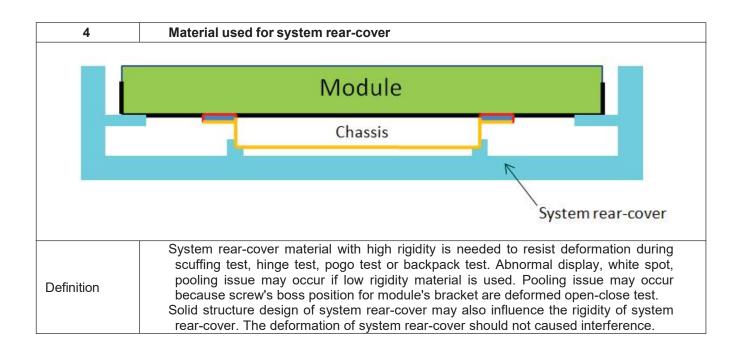
11.3 OTHER PRECAUTIONS


- (1) Normal operating condition
 - (a) Display pattern: dynamic pattern (Real display)
 - (Note) Long-term static display can cause image sticking.
- (2) Operating usages to protect against image sticking due to long-term static display
 - (a) Suitable operating time: under 16 hours a day.
 - (b) Static information display recommended to use with moving image.
 - (c) Cycling display between 5 minutes' information(static) display and 10 seconds' moving image.
- (3) Abnormal condition just means conditions except normal condition.



12. MECHANICAL CHARACTERISTIC




Appendix . SYSTEM COVER DESIGN NOTICE

